322513(22)

B. E. (Fifth Semester) Examination, Nov.-Dec. 2021

(CSE/IT Branch)

OPERATING SYSTEM

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) is compulsory and attempt any two from (b), (c) and (d) parts of each question. Part (a) is carry 02 marks each and part (b), (c) and (d) carry 07 marks each. Assume if any data is missing.

Unit-I

- (a) Write down the difference between multitasking and multiprograming operating system.
 - (*) Briefly explain objectives and functions of operating system.

7

2

	(c) Explain the real time operating system with its	
	advantages and disadvantages.	7
	(d) Explain Various System Components of OS.	7
	Unit-II	
2.	(a) What is PCB?	2
	(b) Explain Short Term, Long Term and Medium Term	
	Scheduluer.	7
	(c) Write down the different CPU scheduling criterias.	7
	(d) Consider the following set of processes, with the	
	length of the CPU-burst time given in milliseconds:	7
	Process Burst time	
	121 Pin Volt in 24 mg Volt in 24 mg	
	$\frac{1}{P_2}$	
	P ₃ 3	
	The process are assumed to have arrived in the	
(3	order P ₁ , P ₂ , P ₃ all at time 0 (zero):	
	(i) Draw a Gantt-chart illustrating the execution of	
	these processes using FCFS.	

(ii)	Compute waiting t	imes	for	the	processes	and
	average waiting tim	ie. /				

(iii) What if the processes arrive in the order P_2 , P_3 , P_1 ?

in the old stream Unit-III of the street and the

3.	(a) Write	the	con	diti	ons i	for a	dea	dlo	ck.					2
	(b) What is deadlock? Give the various methods to avoid the deadlock.								7					
	(c) Write down the two methods for handling deadlocks.							g	7					
	(d) Consi	der	the	follo	owin	g sn	apsl	not o	of a	syst	em	gi T		7
	Process Allocation Max Available													
		A	В	C	D	A	В	C	D	A	В	C	D	
	P_0	0	0	1	2	0	0	1	2	1	5	2	0	
	\mathbf{P}_{1}	1	0	0	0	1	7	5	0					
	P_2	1	3	5	4	2	3	5	6					
	P_3	0	6	3	2	0	6	5	2					
	P_4	0	0	1	4	0	6	5	6					

r	4	- 70
	4	- 1
L	-	- J

Using Banker's algorithm, answer the following questions:

- (i) What is the content of matrix NEED?
- (ii) Is the system in a safe state?
- (iii) If a request from process P_1 arrives for (0, 4, 2, 0) can the request be granted immediately?

Unit-IV

(a)	Define logical and physical address space.
(b)	Define Fragmentation. Explain Internal and External Fragmentation.
(c)	Explain demand paging with an example.
	For the partitions of 100 K, 500 K, 200 K, 300 K and 600 K (in-order)
	Place the processes of size 212 K, 417 K, 112 K, 426 K (in-order) according to best fit algorithm,

Unit-V

5. (a) What is file? Write down the different file attributes. 2

r	-65	- 1

(b)	Expl	ain buffering mechanism with its type.	7			
		P				
(c)	Write a short notes on :					
	(i)	Single-level Directory				
	(ii)	Tree-level Directory				
(d)	d) Explain any one file allocation method with proper					
	exan	nple.	7			